2022
-
Exploring the Design Space of Headphones as Wearable Public Displays
Dennis Stanke, Pia Brandt and Michael Rohs
CHI Conference on Human Factors in Computing Systems Extended Abstracts - CHI EA '22The need for online meetings increased drastically during the COVID-19 pandemic. Wearing headphones for this purpose makes it difficult to know when a headphone wearing person is available or in a meeting. In this work, we explore the design possibilities of headphones as wearable public displays to show the current status or additional information of the wearer to people nearby. After two brainstorming sessions and specifying the design considerations, we conducted an online survey with 63 participants to collect opinions of potential users. Besides the preference of the colors red and green as well as using text to indicate availability, we found that only 54 % of our participants would actually wear headphones with public displays attached. The benefit of seeing the current availability status of a headphone-wearing person in an online meeting or phone call scenario were nonetheless mentioned even by participants that would not use such headphones. -
TrackballWatch: Trackball and Rotary Knob as a Non-Occluding Input Method for Smartwatches in Map Navigation Scenarios
Dennis Stanke, Peer Schroth and Michael Rohs
Proceedings of the ACM on Human-Computer Interaction, Volume 6, Issue MHCI - MobileHCI '22A common problem of touch-based smartwatch interaction is the occlusion of the display. Although some models provide solutions like the Apple "digital crown" or the Samsung rotatable bezel, these are limited to only one degree of freedom (DOF). Performing complex tasks like navigating on a map is still problematic as the additional input option helps to zoom, but touching the screen to pan the map is still required. In this work, we propose using a trackball as an additional input device that adds two DOFs to prevent the occlusion of the screen. We created several prototypes to find a suitable placement and evaluated them in a typical map navigation scenario. Our results show that the participants were significantly faster (15.7%) with one of the trackball setups compared to touch input. The results also show that the idle times are significantly higher with touch input than with all trackball prototypes, presumably because users have to reorient themselves after panning with finger occlusion.
2020
-
TactileWear: A Comparison of Electrotactile and Vibrotactile Feedback on the Wrist and Ring Finger
Dennis Stanke, Tim Dünte and Michael Rohs
Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society - NordiCHI '20Wearables are getting more and more powerful. Tasks like notifications can be delegated to smartwatches. But the output capabilities of wearables seem to be stuck at displays and vibration. Electrotactile feedback may serve as an energy-efficient alternative to standard vibration feedback. We developed prototypes of wristbands and rings and conducted two studies to compare electrotactile and vibrotactile feedback. The prototypes have either four electrodes for electrotactile feedback or four actuators for vibration feedback. In a first study we analyzed the localization characteristics of the created stimuli. The results suggest more strongly localized sensations for electrotactile feedback, compared to vibrotactile feedback, which was more diffuse. In a second study we created notification patterns for both modalities and evaluated recognition rates, verbal associations, and satisfaction. Although the recognition rates were higher with electrotactile feedback, vibrotactile feedback was judged as more comfortable and less stressful. Overall, the results show that electrotactile feedback can be a viable alternative to vibrotactile feedback for wearables, especially for notification rings.
2016
-
EmojiZoom: Emoji Entry via Large Overview Maps 😄 🔍
Henning Pohl, Dennis Stanke and Michael Rohs
Proceedings of the 18th international conference on Human-computer interaction with mobile devices and services - MobileHCI '16Current soft keyboards for emoji entry all present emoji in the same way: in long lists, spread over several categories. While categories limit the number of emoji in each individual list, the overall number is still so large, that emoji entry is a challenging task. The task takes particularly long if users pick the wrong category when searching for an emoji. Instead, we propose a new zooming keyboard for emoji entry. Here, users can see all emoji at once, aiding in building spatial memory where related emoji are to be found. We compare our zooming emoji keyboard against the Google keyboard and find that our keyboard allows for 18% faster emoji entry, reducing the required time for one emoji from 15.6s to 12.7s. A preliminary longitudinal evaluation with three participants showed that emoji entry time over the duration of the study improved at up to 60% to a final average of 7.5s.